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Abstract

Artvin, located in the Caucasus ecological region, is a unique area due to its high 
mountains, climatic characteristics, terrestrial and aquatic ecosystems, and high 
biodiversity. Thus, it is a suitable area for examining the effects of landforms and 
climate on vegetation dynamics. Vegetation changes over a three-year period (2018 
to 2020) were investigated by examining the trends in the Normalized Difference 
Vegetation Index (NDVI) across the study area. First, the relationships between mean 
temperature, total precipitation and landforms (elevation, slope, aspect and distance 
from the sea) were determined by regression analysis, and their interpolated maps 
were created. In the second stage, the effects of the same landform characteristics 
and climatic factors, such as total precipitation and mean temperature, on NDVI 
were analysed. Regression analysis showed that the relationships between precipita-
tion and distance from the sea, and between temperature and elevation were statisti-
cally significant. They were therefore used for prediction modelling. Changes in 
temperature and precipitation affected the NDVI values, but precipitation was found 
to be more significant than temperature. Landform differences were also responsible 
for changes in the NDVI values; distance from the sea was the most significant factor. 
The study also shows that in the drier period (2018), the elevation range where NDVI 
decreases is lower than during the other periods (2018 and 2020). We therefore 
conclude that the alpine zone can be more affected during drought periods. 
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Introduction

Sustainable landscape management requires knowl-
edge of  abiotic ecosystem components, such as cli-
mate and topography, and needs to be able to analyse 
the interactions between them. Correlations between 
non-living environmental components (such as land-
forms and climate) and vegetation constitute an im-
portant basis for the creation of  sustainable manage-
ment strategies in today’s world, where the effects of  
climate change are evident. 

Temperature and precipitation are key climatic fac-
tors that alter the Normalized Difference Vegetation 
Index (NDVI) (Sanz et al. 2021), which is an indicator 
of  the development of  vegetation in terrestrial ecosys-
tems (Myneni & Williams 1994; Xu et al. 2017; Chu et 
al. 2019). Like all organisms, plants need an optimum 
temperature range for maximum growth (Kimmins 
2004). If  the temperature exceeds this optimum range, 
it adversely affects plant growth due to decreased pho-
tosynthetic activity, and water and nutrient availability. 
Total annual precipitation and its distribution over the 
vegetation period are the main controls on vegetation 
structure, composition and distribution. Thus, pre-
cipitation greatly impacts the amount of  vegetation 
(Zhang et al. 2013). Researchers have reported that 
drought due to climate change negatively alters vegeta-
tion growth (Gao et al. 2014; Pang et al. 2017; Nanzad 
et al. 2019; Li et al. 2021; Zhe & Zhang 2021), and that 
there is a close correlation between vegetation cover 

changes and climate factors, such as temperature and 
rainfall (Hou et al. 2015; Liu et al. 2018).

Landforms such as elevation, aspect and slope cor-
relate significantly with vegetation and soil patterns at 
meso- and microscales (El-Keblawy et al. 2015; Flores 
et al. 2019). This is because landform controls the in-
tensity of  the key factors important to plants and to 
the soils that develop with them (Jiang et al. 2021; Pei-
lin et al. 2020; Li et al. 2020; Liu et al. 2019). Erosion, 
for example, restricts plant growth by decreasing soil 
depth and water efficiency in sloping terrain. Land-
forms can also affect the large-scale spatial distribu-
tion and patterns of  vegetation by creating microcli-
mates (Panigrahi et al. 2021).

The NDVI is defined as a measure of  surface re-
flectance; it provides a quantitative estimation of  veg-
etation growth and biomass (Wu et al. 2016). This 
index varies between −1 and +1, in which values of  
less than zero during the growing season indicate no 
vegetation cover (e. g. in areas of  desert or bare earth), 
while values greater than zero in the gowning season 
describe vegetation cover (Choubin et al. 2019). The 
NDVI value is associated with the intensity of  photo-
synthetic activity in the vegetation observed (Piao et al. 
2006; Wu et al. 2015). NDVI can accurately reflect the 
metabolic intensity and annual variation of  vitality in 
vegetation; it indicates vegetation growth, and changes 
in temperature, precipitation and other climatic factors 
in the absence of  human activities and natural disas-
ters (Ghebrezgabher et al. 2020; Jiang et al. 2021; Liu 
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et al. 2019; Poll et al. 2009). Thus, NDVI has been 
widely used to monitor vegetation dynamics and de-
termine the effect of  climate variations such as cool-
ing and warming on vegetation in the global (Nemani 
et al. 2003; Zhu et al. 2016) and regional (Piao et al. 
2006; Wu et al. 2015) scale.

Its particular geographical location and topography 
make Artvin both a special region for climatic varia-
tion, and Turkey’s richest region in terms of  biodiver-
sity (Eminağaoğlu et al. 2015). Within the borders of  
Artvin, there are three National Parks (NP) (Kaçkar 
Mountains NP, Hatila Valley NP, Karagöl-Sahara 
NP), three Nature Protection Areas (NPA) (Camili-
Efeler NPA, Camili-Gorgit NPA, Çamburnu NPA), 
five Natural Parks (NaP) (Altiparmak Mountains NaP, 
Balıklı-Güneşli Waterfalls NaP, Borcka-Karagöl NaP, 
Cehennem Deresi Canyon NaP, Tavşan Hill NaP), and 
Camilli Biosphere Reserve. Due to the variability in 
topography, climate and vegetation, even over short 
distances, Artvin is a suitable study area for observ-
ing the effects of  climatic and topographical factors 
on the temporal and spatial variability of  vegetation. 
Nowadays, the effects of  climate change on ecosys-
tems are observed across the globe. For this reason, 
new tools and methods are necessary to understand 
ecosystem components and predict possible changes. 
By using NDVI, the effects of  changes in the abiotic 
environment on the ecosystem can be determined. 
The aim of  this study was to identify the effects of  
climatic parameters (such as precipitation and temper-

ature), and landforms (such as elevation, aspect, slope 
and distance from the sea) on the NDVI during the 
three years 2018, 2019 and 2020. The results of  this 
study will be useful for practitioners in estimating the 
possible consequences of  climate change and manag-
ing sites accordingly.

Materials and Methods

Study area
The study area located in Artvin province is 

bounded by 455230527235 N and 4585102-4539220 
E according to UTM WGS 1984 coordinate system 
(Figure 1). Topographically, it is defined by deep 

Study 
area
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Legend

Figure 1 – Location of  the study area and of  the meteorological observation stations.

Figure 2 – The surface of  the study area in 3D.
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Figure 3 – (a) Corine land use map and (b) the area proportion of  the Corine classes; (c) elevation map of  the study area and (d) the 
area proportion of  the elevation classes; (e) slope map of  the study area and (f) area proportion of  the slope classes; (g) aspect map of  
the study area and (h) area proportion of  the aspects.

a)

c)

e)

g)

b)

d)

f)

h)

112
121

122
13

1
133 211 222

242
243 311 312

313
321

324
331

332
333

511 512

44–350

351–700

701–1,050

1,0
51

–1
,40

0

1,401–1,750

1,751–2,100

2,101–2,450

2,451–2,800

2,801–3,150

3,151–3,500

0–0.5
0.6–2

2.1–5.0

5.1
–1

0.0

10.1–15.0

15.1–30.0

30.1–45.0
>45.0

N NE E SE S SW W NW

CORINE Codes

Elevation (m)

Slope (%)

Aspect km130 6.5 2619.5

km130 6.5 2619.5

km130 6.5 2619.5

km130 6.5 2619.5

0–0.5
0.6–2

2.1–5.0

5.1
–1

0.0

10.1–15.0

15.1–30.0

30.1–45.0
>45.0

Slope (%)

N NE E SE S SW W NW
Aspect

Flat

50%

40%

45%

35%

25%

15%

5%

30%

20%

10%

0%

Ar
ea

 p
ro

po
rti

on
 (%

)



27
Hilal  Turgut & Bülent Turgut

valleys and high mountains, so there are considerable 
variations in elevation and slope, even over short 
distances (Figure 2). There are four dams in the study 
area (the Muratlı, Borçka, Deriner and Artvin Dams), 
built on the Çoruh River to generate hydroelectric 
power. According to the CORINE land-cover 
classes, the area comprises 19 different land-use cases 
(Figure 3a), and forest and seminatural areas cover 
86% of  study area (Figure 3b). In terms of  its flora, 
Artvin is the richest province in Turkey, with a total 
of  2,727 plant taxa belonging to 137 families and 
761 genera (Eminağaoğlu et al. 2015). According to 
the Thornthwaite climate classification system, the 
study area includes six classes: wet (A), humid (B1, 
B2, B3, B4), and semi-humid (C2) (Turkish State 
Meteorological Services 2021; https://www.mgm.gov.
tr/iklim/iklim-siniflandirmalari.aspx). 

The elevation is the lowest in the Coruh riverbed, 
but reaches 3,400 m in the mountains (Figure 3c). We 
divided the elevation range into 350 m bands. The 
range 1,400–1,750 m, accounting for 20.1% of  the 
study area, is the single most extensive altitude class. 
The least extensive is 3,150–3,500 m (Figure 3d). Steep 
terrain is common (Figure 3e): in 42% of  the study area, 
the slope is > 45% (Figure 3f). Since the mountains in 
the area extend east-west, the predominant aspects are 
north- and south-facing (Figure 3g), with north-facing 
being the most common (16.82%) (Figure 3h).

Data and analysis methods

Mapping landforms
A digital elevation model, slope, distance from the 

sea and aspect were computed for the study area using 
the Spatial analyst tool in ArcGIS software and Alos 
Palsar satellite imagery with a resolution of  12.5 m 
(ASF DAAC 2015). Due to the large size of  the study 
area, maps were created by combining images taken 
on various cloudless days in 2019, using ArcGIS image 
analysis tools. The slope map created used the classifi-
cation system recommended by the FAO (2021).

Obtaining climate data and creating 
interpolated maps

The results of  the statistical analyses showed that 
the years 2018, 2019 and 2020 had significant differ-
ences in terms of  temperature and precipitation. For 
this reason, data from these three years were evaluated 
in the study. The choice of  consecutive years minimiz-
es the effects of  other factors, such as anthropogenic 
ones, which may have an impact on NDVI. Meteoro-
logical data for 2018, 2019 and 2020, including annual 
total precipitation and annual mean temperature, were 
collected from 22 meteorological observation stations 
of  the Turkish State Meteorological Service in Artvin 
(Figure 1). Their geographical coordinates and eleva-
tion were obtained, and their distances from the sea 
were determined using the ArcGIS software. The fol-

Table 1 – Prediction models determined using regression analysis.
Years Temperature Precipitation

2018 17.29 − (0.00499*Elevation) [0.0000005*(Distance to sea)2]-(0.0589*Distance from sea) + 2,202.4

2019 16.70 − (0.00512*Elevation) [0.0000006*(Distance to sea)2]-(0.0676*Distance from sea) + 2,148.1

2020 16.04 − (0.00467*Elevation) [0.0000006*(Distance to sea)2]-(0.0677*Distance from sea) + 2,450.5

Figure 4 – Regression analysis results for (a) 2018, (b) 2019, 
and (c) 2020 in terms of  temperature. The regression coefficients 
are 0.95, 0.94 and 0.92, respectively.

a)

Model
Conf. interval (Obs 95%)
Conf. interval (Mean 95%)

b)

c)
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lowing steps were followed in creating interpolated 
maps for the annual mean temperature and annual 
total precipitation: 
a. Formulating prediction models of  mean tempera-

ture and total precipitation: Regression analysis was 
used to determine the relationships between: i. the 
annual mean temperature and altitude; ii. the annual 
mean temperature and distance from the sea; iii. the 
annual total precipitation and altitude; and iv. the 
annual total precipitation and distance from the sea. 
It was found that there is a linear relationship be-
tween the annual mean temperature and elevation 
(Figure 4), and an exponential relationship between 
the annual precipitation and distance from the sea 
(Figure 5). The prediction models obtained from 
regression formulae are presented in Table 1. 

b. Generating average temperatures and total pre-
cipitation values for virtual stations: 2,500 points 

(50×50 squares) were created within the bounda-
ries of  the study area using the ArcGIS Fishnet tool 
(Figure 6). The mean temperature and total precipi-
tation values for 2018, 2019 and 2020 were then 
interpolated for the same points using the ArcGIS 
Raster Calculator tool, using estimation models. Cre-
ating 2,500 virtual stations increased the reliabil-
ity of  the interpolated maps for precipitation and 
temperature by representing as many elevation and 
distance-from-sea points as possible. The annual 
mean temperature and total precipitation data were 
calculated using prediction models for virtual sta-
tions.

c. Mapping for mean temperature and total precipi-
tation: The interpolated maps for mean tempera-
ture and total precipitation for each year were cre-
ated using the Inverse Distance Weighting method, 
which has a low root mean square error value; the 
ArcGIS Interpolation tool was used. 

Determining the NDVI values of the study area
To calculate the NDVI, band 4 (red) and band 5 

(near-infrared) of  Landsat 8 OLI/TIRS C2 Level 
2 images, with a ground spatial resolution of  30 m, 
downloaded from United States Geological Survey 
(USGS) web services (https://earthexplorer.usgs.gov) 
were used (Li et al. 2013). The ArcGIS Raster calcula-
tor was used for calculations (Eq 1) based on satellite 
images dated August 2018, August 2019 and August 
2020.

NDVI = (pNIR – pred) /   (pNIR + pred)  Eq 1.

NDVI ... Normalized Difference Vegetation Index
pNIR ... Near-infrar-red band
pred ... Red band

95%CI
95%PI

Figure 5 – Regression analysis results for (a) 2018, (b) 2019, 
and (c) 2020 in terms of  precipitation. The regression coef-
ficients are 0.82, 0.70 and 0.77, respectively.

95%CI
95%PI

95%CI
95%PI

a)

b)

c)

Figure 6 – Distribution of  virtual stations in the study area.
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Determining relationships between NDVI and 
abiotic environment

The following steps were followed to determine the 
variation of  NDVI due to the abiotic environment:

a. Total annual precipitation, mean annual tempera-
ture, elevation, aspect, slope and distance-from-sea 
layers were converted to vector

b. The water surfaces were masked
c. NDVI variation was determined from the dif-

ferences in abiotic environment using ArcGIS Zonal 
statistics as table tools.

Statistical analysis
Analysis of  variance (ANOVA) was used to deter-

mine the differences among years, elevation and dis-
tance from sea in terms of  average temperature, total 
precipitation and NDVI; the Tukey comparison test 
was used to determine the differences among means. 
Regression analysis was performed to determine the 
relationships between the climatic parameters and 
landforms. XLSTAT software was used for statistical 
analysis.

Results and Discussion

Spatiotemporal changes in precipitation and 
temperature

The total precipitation varied in 2018, 2019 and 
2020 (Figure 7a). The highest precipitation occurred in 
2020, followed by 2018 and 2019. The differences be-
tween the years in terms of  precipitation were statisti-
cally significant. The average temperature also varied 
significantly over the years. The highest temperature 
was in 2018, and the lowest in 2020 (Figure 7b). 

The spatial distributions for annual total precipita-
tion and annual mean temperature are shown in Fig-
ures 8 and 9, respectively. The area covered by the low-
est precipitation range (< 550 mm) was greater in 2019 
than in the other two years. It was the smallest in 2020, 
which was the most rainy of  the three years studied 
(Figure 8). In line with the results of  the variance 
analysis, the area covered by the highest temperature 
class (16–17°C) in the distribution map was greater in 
2018 than in the other years. It decreased in 2019, and 
further decreased in 2020 (Figure 9).

The temperature differences among 350 m eleva-
tion intervals are statistically significant (Figure 10a). 
Our results agree with those of  previous studies that 
indicate that mean temperature decreases with increas-
ing elevation (Battey et al. 2019; Poll et al. 2009; Rich-
omme et al. 2010; Yao et al. 2016). The mean tem-
perature also differed significantly depending on the 
distance from the sea (Figure 10b). However, unlike 

Figure 7 – Variation in (a) annual total precipitation and (b) 
mean temperature from 2018 to 2020 (Fprecipitation: 483.28;  
Ftemperature: 48.69; p<.01).

a)

b)

Precipitation (mm)

Figure 8 – Spatial variability of  precipitation in (a) 2018, (b) 
2019, and (c) 2020.
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the findings for precipitation, the differences did not 
present a regular trend. They can be explained by the 
distance from the sea in some parts of  the area, but 
mean temperature was also affected by elevation and 
aspect, which created higher-temperature microcli-
mates.

The total precipitation differed significantly in re-
lation to elevation (Figure 11a). Researchers have re-
ported a positive linear relationship between elevation 
and precipitation in arid regions (Yu et al. 2018), while 
the increase in elevation in humid regions causes a de-
crease in precipitation (Angelini et al. 2011; Ogino et 
al. 2016). Further away from the sea, the total annual 
precipitation changed significantly (Figure 11b). Our 
findings were consistent with those of  other research-
ers who reported that annual precipitation decreased 
inland (Bailey 2009; Bao et al. 2021).

Spatiotemporal changes to NDVI
The NDVI values varied over the years. The low-

est value was achieved in 2019, followed by 2018 and 
2020, respectively (Figure 12): vegetative growth and 
biomass were lowest in 2019, and highest in 2020. It 
is noteworthy that the highest NDVI (in 2020) coin-
cided with the highest total annual precipitation. The 
differences between years in terms of  the NDVI were 
statistically significant: it appears that the changes in 
temperature and precipitation in 2018, 2019 and 2020 
caused a difference in NDVI values in these years (a 
finding reported by other researchers, see Catorci et 
al. 2021; Zhe & Zhang 2021), and indeed, that the 
temperature and precipitation changes are one of  the 
main reasons for the differences in NDVI values in 
the years we studied. The areas highlighted in green in 
the NDVI distribution map (Figure 13) represent are-
as with NDVI values above 0.20. Fretwell et al. (2011) 
reported that areas with an NDVI value of  more than 
0.20 can be considered vegetated. The differences in 
the NDVI distribution maps agree with the results 
of  the ANOVA tests, which compared years. In the 
NDVI distribution map for 2020, the areas above 0.20 
were more extensive than in 2019. 

Temperatur (°C)

c)

a)

b)

Figure 10 – Variation in average temperature along with (a) 
elevation and (b) distance from sea (Felevation: 758.2; p <  .01; 
Fdistance from sea: 152.16; p < .01).
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Relationships between NDVI and abiotic 
environment

Variation in NDVI depending on precipitation 
and temperature

The NDVI increased significantly with increas-
ing precipitation (Figure 14a). A positive correlation 
between the amount of  precipitation and NDVI has 
been demonstrated in the literature (Fabricante et al. 
2009; Wingate et al. 2019). The NDVI differed sig-
nificantly in relation to temperature (Figure 14b) and 
was lowest in the coldest temperature. Although it in-
creased with increasing temperature, the trend above 

10–11°C was not stable. Low temperatures generally 
correspond to areas with high elevation, resulting in 
low vegetation density and, accordingly, low NDVI. 
The decrease of  NDVI at high temperatures may be 
due to water stress, as researchers have reported that 
in arid areas the NDVI values decreased as tempera-
ture increased (Nse et al. 2020; Rani et al. 2018).

Variation in NDVI depending on elevation
To better interpret the differences in the NDVI 

caused by the variations in the landforms, both the 
ANOVA results and the three-year changes in the 
NDVI are shown in separate graphs. The differences 
among elevation ranges in terms of  NDVI were statis-
tically significant. The lowest NDVI values were found 
in areas with an altitude above 3,100 m, the highest 
at 1,050–1,400 m (Figure 15a). The most important 
information in Figure 15b is that unlike in 2018 and 
2020, the altitude range where NDVI started to de-

Figure 13 – Spatial variability of  NDVI in (a) 2018, (b) 
2019, and (c) 2020.

Figure 12 – Variation of  the NDVI along with years  
(F: 74.74; p < .01). Error Bars: +/− 2 SE
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crease in 2019 (the driest year) was 1,050–1,400 m. 
The fact that NDVI values decrease faster in alpine 
zones during arid periods means that the plants grow-
ing in such areas are more affected by dry periods. Re-
searchers have stated that warmer temperatures and 
changing precipitation patterns due to climate change 
will increase the relative importance of  soil and at-
mospheric droughts in limiting productivity across 
different ecosystems, especially fragile ones that are 
extremely sensitive to environmental changes (Tello-
García et al. 2020; Xu et al. 2021). In line with our 
findings, it has been reported that an increase in tem-
perature decreases the productivity of  alpine pastures 
(Tello-García et al. 2020; Xu et al. 2021).

Variation in NDVI depending on the distance 
from the sea

The NDVI differed significantly in relation to dis-
tance from the sea (Figure 16a). NDVI values were 
highest on the coastal side of  the study area, decreas-
ing with increased distance from the sea, falling to 
their lowest around 45–54 km inland (the mid-point 
for distance from the coast), and increasing again from 
this point. In areas that are more than 45 km from 
the coast and where precipitation is below 500 mm, 
the limited increase in precipitation (up to 632 mm) in 
2019 did not increase the NDVI. However, an upward 
trend was observed in these areas in the rainier years 

of  2018 and 2020 (Figure 16b). The change in NDVI 
by distance from the sea may be due to variations in 
precipitation and temperature. Precipitation greatly 
impacts the amount of  vegetation present in any given 
year (Wingate et al. 2019).

Variation in NDVI depending on aspect
Differences in aspect caused significant changes in 

the NDVI (Figure 17a). In all three years, the high-
est NDVI value was in the east, and the lowest in the 
northwest (Figure 17b). Topographical aspect modi-
fies the amount of  solar radiation received by a surface 
(Geiger, 1965; Oke, 1987; Bennie et al. 2008). In humid 
regions, vegetation is denser on the east and west sides 
because of  the greater insolation; higher NDVI values 
were therefore expected on the east-facing slopes of  
the study area. In agreement with our results, previous 
studies also reported that vegetation is denser in east- 
and west-facing areas in humid regions (Jin et al. 2008; 
Zhan et al. 2012).

Variation in NDVI depending on slope
The change in NDVI depending on the slope was 

statistically significant (Figure 18a). The study area is 
predominantly mountainous, and urban areas and ag-
ricultural fields are concentrated in regions with gentle 
slopes. Thus, the NDVI values were the lowest in ar-
eas with a slope of  0–0.5%. These increased with in-
creased slope, but then showed a decreasing trend be-

Figure 14 – Variations in average NDVI along with (a) 
precipitation and (b) temperature (Fprecipitation: 8.042; p < .01;  
Ftemperature: 8.062; p < .01).
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Figure 15 – (a) Variations in average NDVI along with eleva-
tion (Felevation: 13.818; p < .01); (b) change in NDVI in terms 
of  elevation over time.
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Figure 16 – (a) Variations in average NDVI along with dis-
tance from the sea (Fdistance from sea: 5.757; p < .01); (b) change 
in NDVI in terms of  distance from the sea over time.

tween the ranges of  30–45% and > 45% (Figure 18b). 
The main reason for this is that human activities such 
as urbanization, tree-felling and agricultural activity are 
rare on steep terrain. The low NDVI in the steep parts 
of  the study area may be due to shallow soil, low water 
availability for plants because of  very high runoff, and 
high surface temperatures in sunny aspects. Consistent 
with our findings, Xiong et al. (2021) reported that the 
NDVI decreased in areas with a steep gradient.

Conclusion

The NDVI used for qualitative and quantitative es-
timation of  vegetation dynamics is influenced by pre-
cipitation, temperature, elevation, distance from sea, 
aspect and slope. Landform data can be determined 
from satellite images using geographic information 
systems. Based on landform data and using regression 
analysis, patterns in climate dynamics can be predict-
ed. The results showed that in our particular study area 
located in Artvin: (i) temperature can be predicted by 
elevation, and precipitation by distance from the sea; 
(ii) changes in annual mean temperature and annual 
total precipitation alter the NDVI; (iii) NDVI varies 
depending on the landform; (iv) the vegetation of  al-
pine zones is more sensitive to dry periods.
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Figure 17 – (a) Variations in NDVI along with aspect (Faspect: 
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a)

Figure 18 – (a) Variations in NDVI along with slope (Fslope: 
3.373; p < .05); (b) change in NDVI in terms of  slope over 
time.
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